Package index
-
forecast-package
- forecast: Forecasting Functions for Time Series and Linear Models
-
msts()
- Multi-Seasonal Time Series
-
subset(<ts>)
subset(<msts>)
- Subsetting a time series
-
bizdays()
- Number of trading days in each season
-
easter()
- Easter holidays in each season
-
monthdays()
- Number of days in each season
-
fourier()
fourierf()
- Fourier terms for modelling seasonality
-
seasonaldummy()
seasonaldummyf()
- Seasonal dummy variables
-
findfrequency()
- Find dominant frequency of a time series
-
BoxCox()
InvBoxCox()
- Box Cox Transformation
-
BoxCox.lambda()
- Automatic selection of Box Cox transformation parameter
-
tsclean()
- Identify and replace outliers and missing values in a time series
-
tsoutliers()
- Identify and replace outliers in a time series
-
na.interp()
- Interpolate missing values in a time series
-
ndiffs()
- Number of differences required for a stationary series
-
nsdiffs()
- Number of differences required for a seasonally stationary series
-
ocsb.test()
- Osborn, Chui, Smith, and Birchenhall Test for Seasonal Unit Roots
-
bld.mbb.bootstrap()
- Box-Cox and Loess-based decomposition bootstrap.
-
is.constant()
- Is an object constant?
-
ma()
- Moving-average smoothing
-
mstl()
- Multiple seasonal decomposition
-
seasadj()
- Seasonal adjustment
-
seasonal()
trendcycle()
remainder()
- Extract components from a time series decomposition
-
arfima()
- Fit a fractionally differenced ARFIMA model
-
Arima()
- Fit ARIMA model to univariate time series
-
auto.arima()
- Fit best ARIMA model to univariate time series
-
ets()
- Exponential smoothing state space model
-
baggedModel()
baggedETS()
- Forecasting using a bagged model
-
bats()
- BATS model (Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components)
-
tbats()
- TBATS model (Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components)
-
nnetar()
- Neural Network Time Series Forecasts
-
forecast(<stl>)
stlm()
forecast(<stlm>)
stlf()
- Forecasting using stl objects
-
tslm()
- Fit a linear model with time series components
-
meanf()
- Mean Forecast
-
dshw()
- Double-Seasonal Holt-Winters Forecasting
-
forecast(<stl>)
stlm()
forecast(<stlm>)
stlf()
- Forecasting using stl objects
-
splinef()
- Cubic Spline Forecast
-
thetaf()
- Theta method forecast
-
croston()
- Forecasts for intermittent demand using Croston's method
-
modelAR()
- Time Series Forecasts with a user-defined model
-
sindexf()
- Forecast seasonal index
-
forecast(<fracdiff>)
forecast(<Arima>)
forecast(<ar>)
- Forecasting using ARIMA or ARFIMA models
-
forecast(<ets>)
- Forecasting using ETS models
-
forecast(<baggedModel>)
- Forecasting using a bagged model
-
forecast(<bats>)
forecast(<tbats>)
- Forecasting using BATS and TBATS models
-
forecast(<HoltWinters>)
- Forecasting using Holt-Winters objects
-
forecast(<lm>)
- Forecast a linear model with possible time series components
-
forecast(<mlm>)
- Forecast a multiple linear model with possible time series components
-
forecast(<modelAR>)
- Forecasting using user-defined model
-
forecast(<mts>)
- Forecasting time series
-
forecast(<nnetar>)
- Forecasting using neural network models
-
forecast(<StructTS>)
- Forecasting using Structural Time Series models
-
forecast(<ts>)
forecast(<default>)
print(<forecast>)
- Forecasting time series
-
is.forecast()
is.mforecast()
is.splineforecast()
- Is an object a particular forecast type?
-
gghistogram()
- Histogram with optional normal and kernel density functions
-
ggseasonplot()
seasonplot()
- Seasonal plot
-
ggmonthplot()
ggsubseriesplot()
- Create a seasonal subseries ggplot
-
gglagplot()
gglagchull()
- Time series lag ggplots
-
Acf()
Pacf()
Ccf()
taperedacf()
taperedpacf()
- (Partial) Autocorrelation and Cross-Correlation Function Estimation
-
autoplot(<acf>)
ggAcf()
ggPacf()
ggCcf()
autoplot(<mpacf>)
ggtaperedacf()
ggtaperedpacf()
- ggplot (Partial) Autocorrelation and Cross-Correlation Function Estimation and Plotting
-
ggtsdisplay()
tsdisplay()
- Time series display
-
checkresiduals()
- Check that residuals from a time series model look like white noise
-
StatForecast
GeomForecast
geom_forecast()
- Forecast plot
-
plot(<Arima>)
plot(<ar>)
autoplot(<Arima>)
autoplot(<ar>)
- Plot characteristic roots from ARIMA model
-
plot(<bats>)
autoplot(<tbats>)
autoplot(<bats>)
plot(<tbats>)
- Plot components from BATS model
-
plot(<ets>)
autoplot(<ets>)
- Plot components from ETS model
-
plot(<forecast>)
autoplot(<forecast>)
autoplot(<splineforecast>)
autolayer(<forecast>)
plot(<splineforecast>)
- Forecast plot
-
autoplot(<mforecast>)
autolayer(<mforecast>)
plot(<mforecast>)
- Multivariate forecast plot
-
autoplot(<decomposed.ts>)
autoplot(<stl>)
autoplot(<StructTS>)
autoplot(<seas>)
autoplot(<mstl>)
- Plot time series decomposition components using ggplot
-
autolayer(<mts>)
autolayer(<msts>)
autolayer(<ts>)
autoplot(<ts>)
autoplot(<mts>)
autoplot(<msts>)
fortify(<ts>)
- Automatically create a ggplot for time series objects
-
autolayer()
- Create a ggplot layer appropriate to a particular data type
-
is.acf()
is.Arima()
is.baggedModel()
is.bats()
is.ets()
is.modelAR()
is.stlm()
is.nnetar()
is.nnetarmodels()
- Is an object a particular model type?
-
fitted(<ARFIMA>)
fitted(<Arima>)
fitted(<ar>)
fitted(<bats>)
fitted(<ets>)
fitted(<modelAR>)
fitted(<nnetar>)
fitted(<tbats>)
- h-step in-sample forecasts for time series models.
-
residuals(<forecast>)
residuals(<ar>)
residuals(<Arima>)
residuals(<bats>)
residuals(<tbats>)
residuals(<ets>)
residuals(<ARFIMA>)
residuals(<nnetar>)
residuals(<stlm>)
residuals(<tslm>)
- Residuals for various time series models
-
checkresiduals()
- Check that residuals from a time series model look like white noise
-
arimaorder()
- Return the order of an ARIMA or ARFIMA model
-
arima.errors()
- Errors from a regression model with ARIMA errors
-
simulate(<ets>)
simulate(<Arima>)
simulate(<ar>)
simulate(<lagwalk>)
simulate(<fracdiff>)
simulate(<nnetar>)
simulate(<modelAR>)
simulate(<tbats>)
- Simulation from a time series model
-
tbats.components()
- Extract components of a TBATS model
-
getResponse()
- Get response variable from time series model.
-
modeldf()
- Compute model degrees of freedom
-
accuracy(<default>)
- Accuracy measures for a forecast model
-
CVar()
- k-fold Cross-Validation applied to an autoregressive model
-
CV()
- Cross-validation statistic
-
tsCV()
- Time series cross-validation
-
dm.test()
- Diebold-Mariano test for predictive accuracy