Returns forecasts using Taylor's (2003) Double-Seasonal Holt-Winters method.
Usage
dshw(
y,
period1 = NULL,
period2 = NULL,
h = 2 * max(period1, period2),
alpha = NULL,
beta = NULL,
gamma = NULL,
omega = NULL,
phi = NULL,
lambda = NULL,
biasadj = FALSE,
armethod = TRUE,
model = NULL
)
Arguments
- y
Either an
msts()
object with two seasonal periods or a numeric vector.- period1
Period of the shorter seasonal period. Only used if
y
is not anmsts()
object.- period2
Period of the longer seasonal period. Only used if
y
is not anmsts()
object.- h
Number of periods for forecasting.
- alpha
Smoothing parameter for the level. If
NULL
, the parameter is estimated using least squares.- beta
Smoothing parameter for the slope. If
NULL
, the parameter is estimated using least squares.- gamma
Smoothing parameter for the first seasonal period. If
NULL
, the parameter is estimated using least squares.- omega
Smoothing parameter for the second seasonal period. If
NULL
, the parameter is estimated using least squares.- phi
Autoregressive parameter. If
NULL
, the parameter is estimated using least squares.- lambda
Box-Cox transformation parameter. If
lambda = "auto"
, then a transformation is automatically selected usingBoxCox.lambda
. The transformation is ignored if NULL. Otherwise, data transformed before model is estimated.- biasadj
Use adjusted back-transformed mean for Box-Cox transformations. If transformed data is used to produce forecasts and fitted values, a regular back transformation will result in median forecasts. If biasadj is
TRUE
, an adjustment will be made to produce mean forecasts and fitted values.- armethod
If
TRUE
, the forecasts are adjusted using an AR(1) model for the errors.- model
If it's specified, an existing model is applied to a new data set.
Details
Taylor's (2003) double-seasonal Holt-Winters method uses additive trend and
multiplicative seasonality, where there are two seasonal components which
are multiplied together. For example, with a series of half-hourly data, one
would set period1 = 48
for the daily period and period2 = 336
for
the weekly period. The smoothing parameter notation used here is different
from that in Taylor (2003); instead it matches that used in Hyndman et al
(2008) and that used for the ets()
function.
References
Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54, 799-805.
Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential smoothing: the state space approach, Springer-Verlag. http://www.exponentialsmoothing.net.