An ARFIMA(p,d,q) model is selected and estimated automatically using the Hyndman-Khandakar (2008) algorithm to select p and q and the Haslett and Raftery (1989) algorithm to estimate the parameters including d.
Arguments
- y
a univariate time series (numeric vector).
- drange
Allowable values of d to be considered. Default of
c(0,0.5)
ensures a stationary model is returned.- estim
If
estim=="ls"
, then the ARMA parameters are calculated using the Haslett-Raftery algorithm. Ifestim=="mle"
, then the ARMA parameters are calculated using full MLE via thearima
function.- model
Output from a previous call to
arfima
. If model is passed, this same model is fitted to y without re-estimating any parameters.- lambda
Box-Cox transformation parameter. If
lambda="auto"
, then a transformation is automatically selected usingBoxCox.lambda
. The transformation is ignored if NULL. Otherwise, data transformed before model is estimated.- biasadj
Use adjusted back-transformed mean for Box-Cox transformations. If transformed data is used to produce forecasts and fitted values, a regular back transformation will result in median forecasts. If biasadj is TRUE, an adjustment will be made to produce mean forecasts and fitted values.
- x
Deprecated. Included for backwards compatibility.
- ...
Other arguments passed to
auto.arima
when selecting p and q.
Value
A list object of S3 class "fracdiff"
, which is described in
the fracdiff
documentation. A few additional objects
are added to the list including x
(the original time series), and the
residuals
and fitted
values.
Details
This function combines fracdiff
and
auto.arima
to automatically select and estimate an ARFIMA
model. The fractional differencing parameter is chosen first assuming an
ARFIMA(2,d,0) model. Then the data are fractionally differenced using the
estimated d and an ARMA model is selected for the resulting time series
using auto.arima
. Finally, the full ARFIMA(p,d,q) model is
re-estimated using fracdiff
. If estim=="mle"
,
the ARMA coefficients are refined using arima
.
References
J. Haslett and A. E. Raftery (1989) Space-time Modelling with Long-memory Dependence: Assessing Ireland's Wind Power Resource (with discussion); Applied Statistics 38, 1-50.
Hyndman, R.J. and Khandakar, Y. (2008) "Automatic time series forecasting: The forecast package for R", Journal of Statistical Software, 26(3).
Examples
library(fracdiff)
x <- fracdiff.sim( 100, ma=-.4, d=.3)$series
fit <- arfima(x)
tsdisplay(residuals(fit))