Updating functional demographic models and coherent functional demographic models.
Source:R/update.R
update.Rd
update.fmforecast()
updates fdm
forecasts. The argument object
is the output from forecast.fdm
which has been subsequently modified with new coefficient forecasts. These new forecasts are used when re-calculating the forecast of the mortality or fertility rates, or net migration numbers.
update.fmforecast2()
updates fdmpr
forecasts. The argument object
is the output from forecast.fdmpr
which has been subsequently modified with new coefficient forecasts.
Usage
# S3 method for class 'fmforecast'
update(object, ...)
# S3 method for class 'fmforecast2'
update(object, ...)
Arguments
- object
Output from either
fdm
orcoherentfdm
.- ...
Extra arguments currently ignored.
Examples
if (FALSE) { # \dontrun{
france.fit <- fdm(fr.mort, order = 2)
france.fcast <- forecast(france.fit, 50)
# Replace first coefficient model with ARIMA(0,1,2)+drift
france.fcast$coeff[[2]] <- forecast(Arima(france.fit$coeff[, 2],
order = c(0, 1, 2), include.drift = TRUE
), h = 50, level = 80)
france.fcast <- update(france.fcast)
fr.short <- extract.years(fr.sm, 1950:2006)
fr.fit <- coherentfdm(fr.short)
fr.fcast <- forecast(fr.fit)
par(mfrow = c(1, 2))
plot(fr.fcast$male)
# Replace first coefficient model in product component with a damped ETS model:
fr.fcast$product$coeff[[2]] <- forecast(ets(fr.fit$product$coeff[, 2], damped = TRUE),
h = 50, level = 80
)
fr.fcast <- update(fr.fcast)
plot(fr.fcast$male)
} # }