Simulate future sample paths of a population using functional models for mortality, fertility and migration.
Usage
pop.sim(
mort,
fert = NULL,
mig = NULL,
firstyearpop,
N = 100,
mfratio = 1.05,
bootstrap = FALSE
)
Arguments
- mort
Forecasts of class
fmforecast2
for mortality.- fert
Forecasts of class
fmforecast
for female fertility.- mig
Forecasts of class
fmforecast2
for net migration.- firstyearpop
Population for first year of simulation.
- N
Number of sample paths to simulate.
- mfratio
Male-female ratio used in distributing births.
- bootstrap
If TRUE, simulation uses resampled errors rather than normally distributed errors.
Value
A list of two arrays containing male and female future simulated population values. The arrays are of dimension (p,h,N) where p is the number of age groups, h is the forecast horizon and N is the number of simulated sample paths.
Examples
if (FALSE) { # \dontrun{
require(addb)
# Construct data objects
mort.sm <- smooth.demogdata(set.upperage(extract.years(australia, 1950:2002), 100))
fert.sm <- smooth.demogdata(extract.years(aus.fertility, 1950:2002))
aus.mig <- netmigration(set.upperage(australia, 100), aus.fertility, mfratio = 1.0545)
# Fit models
mort.fit <- coherentfdm(mort.sm)
fert.fit <- fdm(fert.sm)
mig.fit <- coherentfdm(aus.mig)
# Produce forecasts
mort.fcast <- forecast(mort.fit)
fert.fcast <- forecast(fert.fit)
mig.fcast <- forecast(mig.fit)
# Simulate
aus.sim <- pop.sim(mort.fcast, fert.fcast, mig.fcast, australia)
} # }