All available years and ages are included in the tables. $qx = mx/(1 + ((1-ax) * mx))$ as per Chiang (1984). Warning: the code has only been tested for data based on single-year age groups.
Value
A vital object containing the index, keys, and the new life table variables mx
, qx
, lx
, dx
, Lx
, Tx
and ex
.
References
Chiang CL. (1984) The life table and its applications. Robert E Krieger Publishing Company: Malabar.
Keyfitz, N, and Caswell, H. (2005) Applied mathematical demography, Springer-Verlag: New York.
Preston, S.H., Heuveline, P., and Guillot, M. (2001) Demography: measuring and modeling population processes. Blackwell
Examples
# Compute Victorian life table for females in 2003
aus_mortality |>
dplyr::filter(Code == "VIC", Sex == "female", Year == 2003) |>
life_table()
#> # A vital: 101 x 15 [?]
#> # Key: Age x (Sex, State, Code) [101 x 1]
#> Year Age Sex State Code mx qx lx dx Lx Tx ex
#> <int> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2003 0 fema… Vict… VIC 4.12e-3 4.10e-3 1 4.10e-3 0.996 83.2 83.2
#> 2 2003 1 fema… Vict… VIC 5.76e-4 5.76e-4 0.996 5.73e-4 0.996 82.2 82.6
#> 3 2003 2 fema… Vict… VIC 2.03e-4 2.03e-4 0.995 2.02e-4 0.995 81.2 81.6
#> 4 2003 3 fema… Vict… VIC 6.65e-5 6.65e-5 0.995 6.61e-5 0.995 80.2 80.6
#> 5 2003 4 fema… Vict… VIC 1.32e-4 1.32e-4 0.995 1.31e-4 0.995 79.2 79.6
#> 6 2003 5 fema… Vict… VIC 3.31e-5 3.31e-5 0.995 3.30e-5 0.995 78.3 78.6
#> 7 2003 6 fema… Vict… VIC 0 0 0.995 0 0.995 77.3 77.7
#> 8 2003 7 fema… Vict… VIC 6.46e-5 6.46e-5 0.995 6.42e-5 0.995 76.3 76.7
#> 9 2003 8 fema… Vict… VIC 3.17e-5 3.17e-5 0.995 3.15e-5 0.995 75.3 75.7
#> 10 2003 9 fema… Vict… VIC 3.12e-5 3.12e-5 0.995 3.11e-5 0.995 74.3 74.7
#> # ℹ 91 more rows
#> # ℹ 3 more variables: rx <dbl>, nx <dbl>, ax <dbl>