All available years and ages are included in the tables. $qx = mx/(1 + ((1-ax) * mx))$ as per Chiang (1984). Warning: the code has only been tested for data based on single-year age groups.
Value
A vital object containing the index, keys, and the new life table variables mx
, qx
, lx
, dx
, Lx
, Tx
and ex
.
References
Chiang CL. (1984) The life table and its applications. Robert E Krieger Publishing Company: Malabar.
Keyfitz, N, and Caswell, H. (2005) Applied mathematical demography, Springer-Verlag: New York.
Preston, S.H., Heuveline, P., and Guillot, M. (2001) Demography: measuring and modeling population processes. Blackwell
Examples
# Compute Norwegian life table for females in 2003
norway_mortality |>
dplyr::filter(Sex == "Female", Year == 2003) |>
life_table()
#> # A vital: 111 x 13 [?]
#> # Key: Age x Sex [111 x 1]
#> Year Age Sex mx qx lx dx Lx Tx ex rx
#> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2003 0 Female 0.00309 0.00308 1 0.00308 0.997 81.9 81.9 0.997
#> 2 2003 1 Female 0.000434 0.000434 0.997 0.000433 0.997 80.9 81.2 1.000
#> 3 2003 2 Female 0.000278 0.000278 0.996 0.000277 0.996 79.9 80.2 1.000
#> 4 2003 3 Female 0.000136 0.000136 0.996 0.000135 0.996 78.9 79.2 1.000
#> 5 2003 4 Female 0.00024 0.000240 0.996 0.000239 0.996 77.9 78.2 1.000
#> 6 2003 5 Female 0.000034 0.0000340 0.996 0.0000339 0.996 76.9 77.3 1.000
#> 7 2003 6 Female 0.000099 0.0000990 0.996 0.0000986 0.996 76.0 76.3 1.000
#> 8 2003 7 Female 0.0001 0.0001000 0.996 0.0000996 0.996 75.0 75.3 1.000
#> 9 2003 8 Female 0.000166 0.000166 0.996 0.000165 0.996 74.0 74.3 1.000
#> 10 2003 9 Female 0.000033 0.0000330 0.995 0.0000328 0.995 73.0 73.3 1.000
#> # ℹ 101 more rows
#> # ℹ 2 more variables: nx <dbl>, ax <dbl>