Skip to contents

All available years and ages are included in the tables. $qx = mx/(1 + ((1-ax) * mx))$ as per Chiang (1984). Warning: the code has only been tested for data based on single-year age groups.

Usage

life_table(.data, mortality)

Arguments

.data

A vital including an age variable and a variable containing mortality rates.

mortality

Variable in .data containing Mortality rates (mx). If omitted, the variable with name mx, Mortality or Rate will be used (not case sensitive).

Value

A vital object containing the index, keys, and the new life table variables mx, qx, lx, dx, Lx, Tx and ex.

References

Chiang CL. (1984) The life table and its applications. Robert E Krieger Publishing Company: Malabar.

Keyfitz, N, and Caswell, H. (2005) Applied mathematical demography, Springer-Verlag: New York.

Preston, S.H., Heuveline, P., and Guillot, M. (2001) Demography: measuring and modeling population processes. Blackwell

Author

Rob J Hyndman

Examples

# Compute Norwegian life table for females in 2003
norway_mortality |>
  dplyr::filter(Sex == "Female", Year == 2003) |>
  life_table()
#> # A vital: 111 x 13 [?]
#> # Key:     Age x Sex [111 x 1]
#>     Year   Age Sex          mx        qx    lx        dx    Lx    Tx    ex    rx
#>    <int> <int> <chr>     <dbl>     <dbl> <dbl>     <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1  2003     0 Female 0.00309  0.00308   1     0.00308   0.997  81.9  81.9 0.997
#>  2  2003     1 Female 0.000434 0.000434  0.997 0.000433  0.997  80.9  81.2 1.000
#>  3  2003     2 Female 0.000278 0.000278  0.996 0.000277  0.996  79.9  80.2 1.000
#>  4  2003     3 Female 0.000136 0.000136  0.996 0.000135  0.996  78.9  79.2 1.000
#>  5  2003     4 Female 0.00024  0.000240  0.996 0.000239  0.996  77.9  78.2 1.000
#>  6  2003     5 Female 0.000034 0.0000340 0.996 0.0000339 0.996  76.9  77.3 1.000
#>  7  2003     6 Female 0.000099 0.0000990 0.996 0.0000986 0.996  76.0  76.3 1.000
#>  8  2003     7 Female 0.0001   0.0001000 0.996 0.0000996 0.996  75.0  75.3 1.000
#>  9  2003     8 Female 0.000166 0.000166  0.996 0.000165  0.996  74.0  74.3 1.000
#> 10  2003     9 Female 0.000033 0.0000330 0.995 0.0000328 0.995  73.0  73.3 1.000
#> # ℹ 101 more rows
#> # ℹ 2 more variables: nx <dbl>, ax <dbl>