All available years and ages are included in the tables. $qx = mx/(1 + ((1-ax) * mx))$ as per Chiang (1984). Warning: the code has only been tested for data based on single-year age groups.
Value
A vital object containing the index, keys, and the new life table variables mx, qx, lx, dx, Lx, Tx and ex.
References
Chiang CL. (1984) The life table and its applications. Robert E Krieger Publishing Company: Malabar.
Keyfitz, N, and Caswell, H. (2005) Applied mathematical demography, Springer-Verlag: New York.
Preston, S.H., Heuveline, P., and Guillot, M. (2001) Demography: measuring and modeling population processes. Blackwell
Examples
# Compute Norwegian life table for females in 2003
norway_mortality |>
dplyr::filter(Sex == "Female", Year == 2003) |>
life_table()
#> # A vital: 111 x 13 [?]
#> # Key: Age x Sex [111 x 1]
#> Year Age Sex mx qx lx dx Lx Tx ex rx
#> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2003 0 Female 0.00309 0.00308 1 0.00308 0.997 81.9 81.9 0.997
#> 2 2003 1 Female 0.000434 0.000434 0.997 0.000433 0.997 80.9 81.2 1.000
#> 3 2003 2 Female 0.000278 0.000278 0.996 0.000277 0.996 79.9 80.2 1.000
#> 4 2003 3 Female 0.000136 0.000136 0.996 0.000135 0.996 78.9 79.2 1.000
#> 5 2003 4 Female 0.00024 0.000240 0.996 0.000239 0.996 77.9 78.2 1.000
#> 6 2003 5 Female 0.000034 0.0000340 0.996 0.0000339 0.996 76.9 77.3 1.000
#> 7 2003 6 Female 0.000099 0.0000990 0.996 0.0000986 0.996 76.0 76.3 1.000
#> 8 2003 7 Female 0.0001 0.0001000 0.996 0.0000996 0.996 75.0 75.3 1.000
#> 9 2003 8 Female 0.000166 0.000166 0.996 0.000165 0.996 74.0 74.3 1.000
#> 10 2003 9 Female 0.000033 0.0000330 0.995 0.0000328 0.995 73.0 73.3 1.000
#> # ℹ 101 more rows
#> # ℹ 2 more variables: nx <dbl>, ax <dbl>