Summary for functional demographic model or Lee-Carter model
Source:R/fdm.R
, R/lca.R
summary.fdm.Rd
Summarizes a basis function model fitted to age-specific demographic rate data. It returns various measures of goodness-of-fit.
Examples
fit1 <- lca(fr.mort)
fit2 <- bms(fr.mort, breakmethod = "bai")
fit3 <- fdm(fr.mort)
summary(fit1)
#> Lee-Carter analysis
#>
#> Call: lca(data = fr.mort)
#>
#> Adjustment method: dt
#> Region: FRATNP
#> Years in fit: 1816 - 2006
#> Ages in fit: 0 - 100
#>
#> Percentage variation explained: 96.1%
#>
#> ERROR MEASURES BASED ON MORTALITY RATES
#>
#> Averages across ages:
#> ME MSE MPE MAPE
#> -0.00051 0.00067 0.03237 0.14321
#>
#> Averages across years:
#> IE ISE IPE IAPE
#> -0.04567 0.05467 3.24188 14.25819
#>
#>
#> ERROR MEASURES BASED ON LOG MORTALITY RATES
#>
#> Averages across ages:
#> ME MSE MPE MAPE
#> 0.00556 0.05439 0.00639 0.05591
#>
#> Averages across years:
#> IE ISE IPE IAPE
#> 0.55675 5.42655 0.58512 5.05281
#>
summary(fit2)
#> Lee-Carter analysis
#>
#> Call: bms(data = fr.mort, breakmethod = "bai")
#>
#> Adjustment method: dxt
#> Region: FRATNP
#> Years in fit: 1979 - 2006
#> Ages in fit: 0 - 100
#>
#> Percentage variation explained: 91.2%
#>
#> ERROR MEASURES BASED ON MORTALITY RATES
#>
#> Averages across ages:
#> ME MSE MPE MAPE
#> 0.00005 0.00001 0.00517 0.04500
#>
#> Averages across years:
#> IE ISE IPE IAPE
#> 0.00514 0.00103 0.51670 4.37285
#>
#>
#> ERROR MEASURES BASED ON LOG MORTALITY RATES
#>
#> Averages across ages:
#> ME MSE MPE MAPE
#> 0.00301 0.00433 -0.00046 0.00948
#>
#> Averages across years:
#> IE ISE IPE IAPE
#> 0.30106 0.40835 -0.04694 0.90695
#>
summary(fit3)
#> Functional demographic model
#>
#> Call: fdm(data = fr.mort)
#>
#> Region: FRATNP
#> Data type: mortality
#> Years in fit: 1816 - 2006
#> Ages in fit: 0 - 110
#>
#> Order: 6
#> Percentage variation due to basis functions: 93.8% 2.3% 1.6% 0.6% 0.4% 0.3%
#>
#> Averages across ages:
#> ME MSE MPE MAPE
#> -0.09913 0.05686 -Inf Inf
#>
#> Averages across years:
#> IE ISE IPE IAPE
#> 0.45441 0.73512 -1.66272 8.08544
#>