Skip to contents

Computes period and cohort lifetables from mortality rates for multiple years.

Usage

lifetable(
  data,
  series = names(data$rate)[1],
  years = data$year,
  ages = data$age,
  max.age = min(100, max(data$age)),
  type = c("period", "cohort")
)

Arguments

data

Demogdata object such as obtained from read.demogdata, forecast.fdm or forecast.lca.

series

Name of series to use. Default is the first series in data[["rate"]].

years

Vector indicating which years to include in the tables.

ages

Vector indicating which ages to include in table.

max.age

Age for last row. Ages beyond this are combined.

type

Type of lifetable: period or cohort.

Value

Object of class “lifetable” containing the following components:

label

Name of region from which data are taken.

series

Name of series

age

Ages for lifetable

year

Period years or cohort years

mx

Death rate at age x.

qx

The probability that an individual of exact age x will die before exact age x+1.

lx

Number of survivors to exact age x. The radix is 1.

dx

The number of deaths between exact ages x and x+1.

Lx

Number of years lived between exact age x and exact age x+1.

Tx

Number of years lived after exact age x.

ex

Remaining life expectancy at exact age x.

Note that the lifetables themselves are not returned, only their components. However, there is a print method that constructs (and returns) the lifetables from the above components.

Details

For period lifetables, all years and all ages specified are included in the tables. For cohort lifetables, if ages takes a scalar value, then the cohorts are taken to be of that age in each year contained in years. But if ages is a vector of values, then the cohorts are taken to be of those ages in the first year contained in years.

For example, if ages=0 then lifetables of the birth cohorts for all years in years are computed. On the other hand, if ages=0:100 and years=1950:2010, then lifetables of each age cohort in 1950 are computed.

In all cases, \(q_x = m_x/(1+[(1-a_x)m_x])\) as per Chiang (1984).

Warning: the code has only been tested for data based on single-year age groups.

References

Chiang CL. (1984) The life table and its applications. Robert E Krieger Publishing Company: Malabar.

Keyfitz, N, and Caswell, H. (2005) Applied mathematical demography, Springer-Verlag: New York.

Preston, S.H., Heuveline, P., and Guillot, M. (2001) Demography: measuring and modeling population processes. Blackwell

See also

Author

Heather Booth, Leonie Tickle, Rob J Hyndman, John Maindonald and Timothy Miller

Examples

france.lt <- lifetable(fr.mort)
plot(france.lt)

lt1990 <- print(lifetable(fr.mort, year = 1990))
#> Period lifetable for FRATNP : total 
#> 
#>     year   x     mx     qx     lx     dx     Lx      Tx      ex
#> 1   1990   0 0.0075 0.0074 1.0000 0.0074 0.9931 76.8507 76.8507
#> 2   1990   1 0.0006 0.0006 0.9926 0.0006 0.9923 75.8576 76.4236
#> 3   1990   2 0.0004 0.0004 0.9920 0.0004 0.9918 74.8653 75.4695
#> 4   1990   3 0.0003 0.0003 0.9916 0.0003 0.9915 73.8735 74.4996
#> 5   1990   4 0.0002 0.0002 0.9913 0.0002 0.9912 72.8821 73.5210
#> 6   1990   5 0.0002 0.0002 0.9911 0.0002 0.9910 71.8909 72.5385
#> 7   1990   6 0.0002 0.0002 0.9909 0.0002 0.9908 70.8999 71.5531
#> 8   1990   7 0.0002 0.0002 0.9907 0.0002 0.9906 69.9091 70.5677
#> 9   1990   8 0.0002 0.0002 0.9905 0.0002 0.9904 68.9185 69.5796
#> 10  1990   9 0.0002 0.0002 0.9903 0.0002 0.9902 67.9281 68.5912
#> 11  1990  10 0.0002 0.0002 0.9902 0.0002 0.9901 66.9379 67.6036
#> 12  1990  11 0.0002 0.0002 0.9900 0.0002 0.9899 65.9478 66.6165
#> 13  1990  12 0.0002 0.0002 0.9898 0.0002 0.9897 64.9580 65.6279
#> 14  1990  13 0.0002 0.0002 0.9896 0.0002 0.9895 63.9683 64.6404
#> 15  1990  14 0.0002 0.0002 0.9894 0.0002 0.9893 62.9787 63.6524
#> 16  1990  15 0.0004 0.0004 0.9892 0.0004 0.9890 61.9895 62.6677
#> 17  1990  16 0.0004 0.0004 0.9888 0.0004 0.9886 61.0005 61.6913
#> 18  1990  17 0.0006 0.0006 0.9884 0.0006 0.9881 60.0119 60.7175
#> 19  1990  18 0.0008 0.0008 0.9878 0.0008 0.9874 59.0238 59.7545
#> 20  1990  19 0.0009 0.0009 0.9870 0.0009 0.9866 58.0364 58.8009
#> 21  1990  20 0.0009 0.0009 0.9861 0.0009 0.9857 57.0498 57.8525
#> 22  1990  21 0.0010 0.0010 0.9853 0.0010 0.9848 56.0642 56.9033
#> 23  1990  22 0.0010 0.0010 0.9843 0.0010 0.9838 55.0794 55.9604
#> 24  1990  23 0.0010 0.0010 0.9833 0.0010 0.9828 54.0957 55.0170
#> 25  1990  24 0.0010 0.0010 0.9823 0.0010 0.9818 53.1129 54.0726
#> 26  1990  25 0.0010 0.0010 0.9813 0.0010 0.9807 52.1311 53.1270
#> 27  1990  26 0.0011 0.0011 0.9802 0.0011 0.9797 51.1504 52.1813
#> 28  1990  27 0.0011 0.0011 0.9792 0.0011 0.9786 50.1707 51.2374
#> 29  1990  28 0.0011 0.0011 0.9781 0.0010 0.9776 49.1920 50.2938
#> 30  1990  29 0.0012 0.0012 0.9771 0.0011 0.9765 48.2145 49.3466
#> 31  1990  30 0.0012 0.0012 0.9759 0.0011 0.9754 47.2380 48.4039
#> 32  1990  31 0.0013 0.0013 0.9748 0.0012 0.9742 46.2626 47.4591
#> 33  1990  32 0.0012 0.0012 0.9735 0.0012 0.9730 45.2885 46.5194
#> 34  1990  33 0.0014 0.0014 0.9724 0.0013 0.9717 44.3155 45.5749
#> 35  1990  34 0.0014 0.0014 0.9710 0.0014 0.9703 43.3438 44.6361
#> 36  1990  35 0.0015 0.0015 0.9696 0.0014 0.9689 42.3735 43.6998
#> 37  1990  36 0.0016 0.0016 0.9682 0.0016 0.9674 41.4045 42.7640
#> 38  1990  37 0.0017 0.0017 0.9666 0.0016 0.9658 40.4371 41.8329
#> 39  1990  38 0.0019 0.0019 0.9650 0.0019 0.9641 39.4713 40.9018
#> 40  1990  39 0.0019 0.0019 0.9632 0.0018 0.9623 38.5072 39.9800
#> 41  1990  40 0.0021 0.0021 0.9614 0.0020 0.9604 37.5449 39.0538
#> 42  1990  41 0.0022 0.0022 0.9594 0.0021 0.9583 36.5846 38.1343
#> 43  1990  42 0.0024 0.0024 0.9572 0.0023 0.9561 35.6263 37.2176
#> 44  1990  43 0.0027 0.0026 0.9549 0.0025 0.9537 34.6702 36.3062
#> 45  1990  44 0.0029 0.0029 0.9524 0.0028 0.9510 33.7165 35.4012
#> 46  1990  45 0.0031 0.0031 0.9496 0.0030 0.9482 32.7655 34.5028
#> 47  1990  46 0.0034 0.0034 0.9467 0.0033 0.9450 31.8173 33.6095
#> 48  1990  47 0.0036 0.0036 0.9434 0.0034 0.9417 30.8723 32.7237
#> 49  1990  48 0.0039 0.0039 0.9400 0.0036 0.9382 29.9305 31.8404
#> 50  1990  49 0.0039 0.0038 0.9364 0.0036 0.9346 28.9923 30.9623
#> 51  1990  50 0.0048 0.0048 0.9328 0.0044 0.9306 28.0578 30.0798
#> 52  1990  51 0.0049 0.0049 0.9283 0.0045 0.9261 27.1272 29.2210
#> 53  1990  52 0.0055 0.0054 0.9238 0.0050 0.9213 26.2011 28.3618
#> 54  1990  53 0.0059 0.0059 0.9188 0.0054 0.9161 25.2798 27.5143
#> 55  1990  54 0.0064 0.0063 0.9134 0.0058 0.9105 24.3637 26.6751
#> 56  1990  55 0.0072 0.0072 0.9076 0.0065 0.9043 23.4533 25.8422
#> 57  1990  56 0.0074 0.0074 0.9011 0.0067 0.8977 22.5490 25.0249
#> 58  1990  57 0.0079 0.0079 0.8944 0.0070 0.8909 21.6513 24.2083
#> 59  1990  58 0.0089 0.0088 0.8873 0.0078 0.8834 20.7604 23.3961
#> 60  1990  59 0.0096 0.0095 0.8795 0.0084 0.8753 19.8770 22.5996
#> 61  1990  60 0.0101 0.0101 0.8711 0.0088 0.8667 19.0016 21.8125
#> 62  1990  61 0.0110 0.0109 0.8624 0.0094 0.8577 18.1349 21.0294
#> 63  1990  62 0.0119 0.0119 0.8529 0.0101 0.8479 17.2772 20.2559
#> 64  1990  63 0.0128 0.0127 0.8428 0.0107 0.8375 16.4294 19.4933
#> 65  1990  64 0.0136 0.0135 0.8321 0.0112 0.8265 15.5919 18.7380
#> 66  1990  65 0.0143 0.0142 0.8209 0.0116 0.8151 14.7654 17.9870
#> 67  1990  66 0.0154 0.0152 0.8092 0.0123 0.8031 13.9503 17.2386
#> 68  1990  67 0.0166 0.0165 0.7969 0.0131 0.7903 13.1472 16.4977
#> 69  1990  68 0.0182 0.0181 0.7838 0.0142 0.7767 12.3569 15.7660
#> 70  1990  69 0.0194 0.0192 0.7696 0.0148 0.7622 11.5802 15.0470
#> 71  1990  70 0.0227 0.0224 0.7548 0.0169 0.7463 10.8180 14.3322
#> 72  1990  71 0.0225 0.0222 0.7379 0.0164 0.7297 10.0717 13.6493
#> 73  1990  72 0.0268 0.0265 0.7215 0.0191 0.7120  9.3420 12.9480
#> 74  1990  73 0.0290 0.0285 0.7024 0.0200 0.6924  8.6300 12.2864
#> 75  1990  74 0.0292 0.0288 0.6824 0.0196 0.6725  7.9376 11.6326
#> 76  1990  75 0.0377 0.0370 0.6627 0.0245 0.6505  7.2651 10.9626
#> 77  1990  76 0.0387 0.0379 0.6382 0.0242 0.6261  6.6146 10.3645
#> 78  1990  77 0.0440 0.0430 0.6140 0.0264 0.6008  5.9885  9.7535
#> 79  1990  78 0.0481 0.0470 0.5876 0.0276 0.5738  5.3878  9.1697
#> 80  1990  79 0.0545 0.0530 0.5599 0.0297 0.5451  4.8140  8.5974
#> 81  1990  80 0.0610 0.0592 0.5302 0.0314 0.5145  4.2689  8.0510
#> 82  1990  81 0.0695 0.0672 0.4989 0.0335 0.4821  3.7544  7.5260
#> 83  1990  82 0.0785 0.0756 0.4653 0.0352 0.4478  3.2723  7.0320
#> 84  1990  83 0.0880 0.0843 0.4302 0.0362 0.4121  2.8245  6.5660
#> 85  1990  84 0.0986 0.0939 0.3939 0.0370 0.3754  2.4125  6.1241
#> 86  1990  85 0.1093 0.1036 0.3569 0.0370 0.3384  2.0370  5.7071
#> 87  1990  86 0.1234 0.1163 0.3200 0.0372 0.3014  1.6986  5.3089
#> 88  1990  87 0.1369 0.1281 0.2828 0.0362 0.2646  1.3972  4.9416
#> 89  1990  88 0.1515 0.1408 0.2465 0.0347 0.2292  1.1326  4.5942
#> 90  1990  89 0.1717 0.1582 0.2118 0.0335 0.1951  0.9034  4.2653
#> 91  1990  90 0.1890 0.1727 0.1783 0.0308 0.1629  0.7084  3.9726
#> 92  1990  91 0.2068 0.1874 0.1475 0.0276 0.1337  0.5455  3.6976
#> 93  1990  92 0.2336 0.2092 0.1199 0.0251 0.1073  0.4118  3.4349
#> 94  1990  93 0.2563 0.2272 0.0948 0.0215 0.0840  0.3044  3.2112
#> 95  1990  94 0.2833 0.2482 0.0733 0.0182 0.0642  0.2204  3.0084
#> 96  1990  95 0.3009 0.2615 0.0551 0.0144 0.0479  0.1562  2.8364
#> 97  1990  96 0.3257 0.2801 0.0407 0.0114 0.0350  0.1083  2.6639
#> 98  1990  97 0.3529 0.3000 0.0293 0.0088 0.0249  0.0734  2.5056
#> 99  1990  98 0.3618 0.3064 0.0205 0.0063 0.0174  0.0485  2.3651
#> 100 1990  99 0.4087 0.3394 0.0142 0.0048 0.0118  0.0311  2.1891
#> 101 1990 100 0.4862 1.0000 0.0094 0.0094 0.0193  0.0193  2.0568

france.LC <- lca(fr.mort)
france.fcast <- forecast(france.LC)
france.lt.f <- lifetable(france.fcast)
plot(france.lt.f)


# Birth cohort lifetables, 1900-1910
france.clt <- lifetable(fr.mort, type = "cohort", age = 0, years = 1900:1910)

# Partial cohort lifetables for 1950
lifetable(fr.mort, years = 1950)
#> Period lifetable for FRATNP : total 
#> 
#>     year   x     mx     qx     lx     dx     Lx      Tx      ex
#> 1   1950   0 0.0536 0.0514 1.0000 0.0514 0.9587 66.3743 66.3743
#> 2   1950   1 0.0050 0.0050 0.9486 0.0047 0.9463 65.4156 68.9593
#> 3   1950   2 0.0018 0.0018 0.9439 0.0017 0.9430 64.4694 68.3010
#> 4   1950   3 0.0013 0.0013 0.9422 0.0012 0.9416 63.5263 67.4258
#> 5   1950   4 0.0010 0.0010 0.9410 0.0009 0.9405 62.5848 66.5102
#> 6   1950   5 0.0008 0.0008 0.9401 0.0008 0.9397 61.6442 65.5749
#> 7   1950   6 0.0007 0.0007 0.9393 0.0007 0.9389 60.7046 64.6285
#> 8   1950   7 0.0006 0.0006 0.9386 0.0006 0.9383 59.7656 63.6761
#> 9   1950   8 0.0006 0.0006 0.9380 0.0006 0.9377 58.8273 62.7149
#> 10  1950   9 0.0005 0.0005 0.9375 0.0005 0.9372 57.8896 61.7522
#> 11  1950  10 0.0006 0.0006 0.9369 0.0006 0.9367 56.9524 60.7852
#> 12  1950  11 0.0006 0.0006 0.9364 0.0005 0.9361 56.0157 59.8213
#> 13  1950  12 0.0006 0.0006 0.9359 0.0005 0.9356 55.0796 58.8546
#> 14  1950  13 0.0007 0.0007 0.9353 0.0006 0.9350 54.1440 57.8882
#> 15  1950  14 0.0007 0.0007 0.9347 0.0007 0.9344 53.2090 56.9270
#> 16  1950  15 0.0009 0.0009 0.9340 0.0008 0.9336 52.2747 55.9663
#> 17  1950  16 0.0009 0.0009 0.9332 0.0009 0.9328 51.3410 55.0149
#> 18  1950  17 0.0011 0.0011 0.9324 0.0010 0.9319 50.4082 54.0655
#> 19  1950  18 0.0011 0.0011 0.9313 0.0011 0.9308 49.4764 53.1234
#> 20  1950  19 0.0013 0.0013 0.9303 0.0013 0.9297 48.5456 52.1838
#> 21  1950  20 0.0014 0.0014 0.9290 0.0013 0.9284 47.6159 51.2534
#> 22  1950  21 0.0015 0.0015 0.9278 0.0014 0.9271 46.6875 50.3226
#> 23  1950  22 0.0017 0.0017 0.9264 0.0016 0.9256 45.7605 49.3976
#> 24  1950  23 0.0017 0.0017 0.9248 0.0015 0.9240 44.8349 48.4813
#> 25  1950  24 0.0017 0.0017 0.9233 0.0016 0.9225 43.9109 47.5607
#> 26  1950  25 0.0019 0.0019 0.9217 0.0017 0.9208 42.9884 46.6421
#> 27  1950  26 0.0019 0.0019 0.9199 0.0018 0.9191 42.0676 45.7282
#> 28  1950  27 0.0020 0.0020 0.9182 0.0018 0.9173 41.1485 44.8163
#> 29  1950  28 0.0020 0.0020 0.9164 0.0019 0.9154 40.2313 43.9038
#> 30  1950  29 0.0021 0.0021 0.9145 0.0019 0.9135 39.3159 42.9922
#> 31  1950  30 0.0023 0.0023 0.9126 0.0021 0.9115 38.4023 42.0814
#> 32  1950  31 0.0021 0.0021 0.9105 0.0019 0.9095 37.4908 41.1765
#> 33  1950  32 0.0024 0.0024 0.9086 0.0022 0.9075 36.5813 40.2630
#> 34  1950  33 0.0025 0.0025 0.9064 0.0023 0.9052 35.6738 39.3584
#> 35  1950  34 0.0024 0.0024 0.9041 0.0022 0.9030 34.7686 38.4561
#> 36  1950  35 0.0029 0.0029 0.9019 0.0026 0.9006 33.8655 37.5490
#> 37  1950  36 0.0028 0.0028 0.8993 0.0025 0.8980 32.9649 36.6559
#> 38  1950  37 0.0031 0.0031 0.8968 0.0028 0.8954 32.0669 35.7575
#> 39  1950  38 0.0033 0.0033 0.8940 0.0029 0.8925 31.1715 34.8674
#> 40  1950  39 0.0034 0.0034 0.8911 0.0030 0.8895 30.2790 33.9808
#> 41  1950  40 0.0037 0.0037 0.8880 0.0033 0.8864 29.3894 33.0957
#> 42  1950  41 0.0040 0.0040 0.8848 0.0036 0.8830 28.5030 32.2156
#> 43  1950  42 0.0044 0.0044 0.8812 0.0039 0.8793 27.6201 31.3434
#> 44  1950  43 0.0048 0.0047 0.8773 0.0042 0.8753 26.7408 30.4792
#> 45  1950  44 0.0051 0.0051 0.8732 0.0045 0.8710 25.8655 29.6220
#> 46  1950  45 0.0056 0.0056 0.8687 0.0048 0.8663 24.9946 28.7713
#> 47  1950  46 0.0062 0.0061 0.8639 0.0053 0.8612 24.1282 27.9298
#> 48  1950  47 0.0066 0.0065 0.8586 0.0056 0.8558 23.2670 27.0991
#> 49  1950  48 0.0070 0.0070 0.8530 0.0060 0.8500 22.4112 26.2740
#> 50  1950  49 0.0076 0.0076 0.8470 0.0065 0.8438 21.5612 25.4556
#> 51  1950  50 0.0086 0.0086 0.8406 0.0072 0.8370 20.7174 24.6472
#> 52  1950  51 0.0091 0.0091 0.8334 0.0076 0.8296 19.8805 23.8554
#> 53  1950  52 0.0098 0.0097 0.8258 0.0080 0.8218 19.0509 23.0692
#> 54  1950  53 0.0103 0.0103 0.8178 0.0084 0.8136 18.2291 22.2909
#> 55  1950  54 0.0111 0.0111 0.8094 0.0090 0.8049 17.4155 21.5175
#> 56  1950  55 0.0117 0.0116 0.8004 0.0093 0.7958 16.6106 20.7526
#> 57  1950  56 0.0127 0.0126 0.7911 0.0099 0.7862 15.8149 19.9903
#> 58  1950  57 0.0133 0.0132 0.7812 0.0103 0.7760 15.0287 19.2385
#> 59  1950  58 0.0143 0.0142 0.7709 0.0110 0.7654 14.2527 18.4895
#> 60  1950  59 0.0160 0.0159 0.7599 0.0121 0.7539 13.4873 17.7489
#> 61  1950  60 0.0173 0.0171 0.7478 0.0128 0.7414 12.7334 17.0273
#> 62  1950  61 0.0180 0.0178 0.7350 0.0131 0.7285 11.9920 16.3157
#> 63  1950  62 0.0199 0.0197 0.7219 0.0142 0.7148 11.2636 15.6024
#> 64  1950  63 0.0223 0.0220 0.7077 0.0156 0.6999 10.5488 14.9058
#> 65  1950  64 0.0243 0.0240 0.6921 0.0166 0.6838  9.8489 14.2303
#> 66  1950  65 0.0260 0.0257 0.6755 0.0174 0.6668  9.1651 13.5678
#> 67  1950  66 0.0285 0.0281 0.6581 0.0185 0.6489  8.4983 12.9124
#> 68  1950  67 0.0313 0.0308 0.6396 0.0197 0.6298  7.8494 12.2717
#> 69  1950  68 0.0354 0.0348 0.6199 0.0216 0.6091  7.2196 11.6465
#> 70  1950  69 0.0376 0.0369 0.5983 0.0221 0.5873  6.6105 11.0483
#> 71  1950  70 0.0422 0.0413 0.5762 0.0238 0.5643  6.0232 10.4525
#> 72  1950  71 0.0473 0.0462 0.5524 0.0255 0.5397  5.4589  9.8817
#> 73  1950  72 0.0524 0.0511 0.5269 0.0269 0.5134  4.9192  9.3361
#> 74  1950  73 0.0567 0.0551 0.5000 0.0276 0.4862  4.4058  8.8120
#> 75  1950  74 0.0643 0.0623 0.4724 0.0294 0.4577  3.9196  8.2970
#> 76  1950  75 0.0705 0.0681 0.4430 0.0302 0.4279  3.4619  7.8151
#> 77  1950  76 0.0786 0.0756 0.4128 0.0312 0.3972  3.0340  7.3495
#> 78  1950  77 0.0873 0.0836 0.3816 0.0319 0.3656  2.6368  6.9098
#> 79  1950  78 0.0921 0.0880 0.3497 0.0308 0.3343  2.2711  6.4948
#> 80  1950  79 0.1059 0.1006 0.3189 0.0321 0.3029  1.9368  6.0734
#> 81  1950  80 0.1176 0.1111 0.2868 0.0319 0.2709  1.6340  5.6969
#> 82  1950  81 0.1278 0.1201 0.2550 0.0306 0.2396  1.3631  5.3465
#> 83  1950  82 0.1413 0.1319 0.2243 0.0296 0.2095  1.1235  5.0080
#> 84  1950  83 0.1564 0.1450 0.1947 0.0282 0.1806  0.9139  4.6932
#> 85  1950  84 0.1690 0.1559 0.1665 0.0260 0.1535  0.7333  4.4044
#> 86  1950  85 0.1859 0.1701 0.1405 0.0239 0.1286  0.5798  4.1254
#> 87  1950  86 0.2032 0.1845 0.1166 0.0215 0.1059  0.4512  3.8683
#> 88  1950  87 0.2228 0.2005 0.0951 0.0191 0.0856  0.3453  3.6302
#> 89  1950  88 0.2387 0.2132 0.0761 0.0162 0.0679  0.2597  3.4152
#> 90  1950  89 0.2629 0.2324 0.0598 0.0139 0.0529  0.1918  3.2052
#> 91  1950  90 0.2812 0.2465 0.0459 0.0113 0.0403  0.1389  3.0241
#> 92  1950  91 0.2902 0.2534 0.0346 0.0088 0.0302  0.0986  2.8499
#> 93  1950  92 0.3348 0.2868 0.0258 0.0074 0.0221  0.0684  2.6474
#> 94  1950  93 0.3512 0.2988 0.0184 0.0055 0.0157  0.0463  2.5110
#> 95  1950  94 0.4013 0.3342 0.0129 0.0043 0.0108  0.0306  2.3678
#> 96  1950  95 0.3690 0.3115 0.0086 0.0027 0.0073  0.0198  2.3054
#> 97  1950  96 0.4334 0.3562 0.0059 0.0021 0.0049  0.0126  2.1224
#> 98  1950  97 0.4106 0.3407 0.0038 0.0013 0.0032  0.0077  2.0200
#> 99  1950  98 0.4717 0.3817 0.0025 0.0010 0.0020  0.0045  1.8054
#> 100 1950  99 0.4779 0.3857 0.0016 0.0006 0.0013  0.0025  1.6112
#> 101 1950 100 0.7639 1.0000 0.0010 0.0010 0.0013  0.0013  1.3091