
Package index
- 
          
forecast-package - forecast: Forecasting Functions for Time Series and Linear Models
 
- 
          
bizdays() - Number of trading days in each season
 
- 
          
bld.mbb.bootstrap() - Box-Cox and Loess-based decomposition bootstrap.
 
- 
          
BoxCox()InvBoxCox() - Box Cox Transformation
 
- 
          
BoxCox.lambda() - Automatic selection of Box Cox transformation parameter
 
- 
          
easter() - Easter holidays in each season
 
- 
          
findfrequency() - Find dominant frequency of a time series
 
- 
          
fourier()fourierf() - Fourier terms for modelling seasonality
 
- 
          
is.constant() - Is an object constant?
 
- 
          
monthdays() - Number of days in each season
 
- 
          
msts() - Multi-Seasonal Time Series
 
- 
          
na.interp() - Interpolate missing values in a time series
 
- 
          
ndiffs() - Number of differences required for a stationary series
 
- 
          
nsdiffs() - Number of differences required for a seasonally stationary series
 
- 
          
ocsb.test() - Osborn, Chui, Smith, and Birchenhall Test for Seasonal Unit Roots
 
- 
          
seasonaldummy()seasonaldummyf() - Seasonal dummy variables
 
- 
          
subset(<ts>)subset(<msts>) - Subsetting a time series
 
- 
          
tsclean() - Identify and replace outliers and missing values in a time series
 
- 
          
tsoutliers() - Identify and replace outliers in a time series
 
- 
          
ma() - Moving-average smoothing
 
- 
          
mstl() - Multiple seasonal decomposition
 
- 
          
seasonal()trendcycle()remainder() - Extract components from a time series decomposition
 
- 
          
seasadj() - Seasonal adjustment
 
- 
          
arfima() - Fit a fractionally differenced ARFIMA model
 
- 
          
Arima() - Fit ARIMA model to univariate time series
 
- 
          
auto.arima() - Fit best ARIMA model to univariate time series
 
- 
          
baggedModel()baggedETS() - Forecasting using a bagged model
 
- 
          
bats() - BATS model (Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components)
 
- 
          
croston_model() - Croston forecast model
 
- 
          
ets() - Exponential smoothing state space model
 
- 
          
mean_model() - Mean Forecast Model
 
- 
          
nnetar() - Neural Network Time Series Forecasts
 
- 
          
rw_model() - Random walk model
 
- 
          
forecast(<stl>)stlm()forecast(<stlm>)stlf() - Forecasting using stl objects
 
- 
          
tbats() - TBATS model (Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components)
 
- 
          
tslm() - Fit a linear model with time series components
 
- 
          
forecast(<croston_model>)croston() - Forecasts for intermittent demand using Croston's method
 
- 
          
dshw() - Double-Seasonal Holt-Winters Forecasting
 
- 
          
forecast(<mean_model>)meanf() - Mean Forecast
 
- 
          
modelAR() - Time Series Forecasts with a user-defined model
 
- 
          
forecast(<rw_model>)rwf()naive()snaive() - Naive and Random Walk Forecasts
 
- 
          
sindexf() - Forecast seasonal index
 
- 
          
splinef() - Cubic Spline Forecast
 
- 
          
forecast(<stl>)stlm()forecast(<stlm>)stlf() - Forecasting using stl objects
 
- 
          
thetaf() - Theta method forecast
 
- 
          
forecast(<fracdiff>)forecast(<Arima>)forecast(<ar>) - Forecasting using ARIMA or ARFIMA models
 
- 
          
forecast(<baggedModel>) - Forecasting using a bagged model
 
- 
          
forecast(<bats>)forecast(<tbats>) - Forecasting using BATS and TBATS models
 
- 
          
forecast(<ets>) - Forecasting using ETS models
 
- 
          
forecast(<HoltWinters>) - Forecasting using Holt-Winters objects
 
- 
          
forecast(<lm>) - Forecast a linear model with possible time series components
 
- 
          
forecast(<mlm>) - Forecast a multiple linear model with possible time series components
 
- 
          
forecast(<modelAR>) - Forecasting using user-defined model
 
- 
          
forecast(<mts>) - Forecasting time series
 
- 
          
forecast(<nnetar>) - Forecasting using neural network models
 
- 
          
forecast(<StructTS>) - Forecasting using Structural Time Series models
 
- 
          
forecast(<ts>)forecast(<default>)print(<forecast>) - Forecasting time series
 
- 
          
is.forecast()is.mforecast()is.splineforecast() - Is an object a particular forecast type?
 
- 
          
Acf()Pacf()Ccf()taperedacf()taperedpacf() - (Partial) Autocorrelation and Cross-Correlation Function Estimation
 
- 
          
checkresiduals() - Check that residuals from a time series model look like white noise
 
- 
          
autoplot(<acf>)ggAcf()ggPacf()ggCcf()autoplot(<mpacf>)ggtaperedacf()ggtaperedpacf() - ggplot (Partial) Autocorrelation and Cross-Correlation Function Estimation and Plotting
 
- 
          
gghistogram() - Histogram with optional normal and kernel density functions
 
- 
          
gglagplot()gglagchull() - Time series lag ggplots
 
- 
          
ggseasonplot()seasonplot() - Seasonal plot
 
- 
          
ggmonthplot()ggsubseriesplot() - Create a seasonal subseries ggplot
 
- 
          
is.acf()is.Arima()is.baggedModel()is.bats()is.ets()is.modelAR()is.stlm()is.nnetar()is.nnetarmodels() - Is an object a particular model type?
 
- 
          
autolayer() - Create a ggplot layer appropriate to a particular data type
 
- 
          
autolayer(<mts>)autolayer(<msts>)autolayer(<ts>)autoplot(<ts>)autoplot(<mts>)autoplot(<msts>)fortify(<ts>) - Automatically create a ggplot for time series objects
 
- 
          
plot(<forecast>)autoplot(<forecast>)autoplot(<splineforecast>)autolayer(<forecast>)plot(<splineforecast>) - Forecast plot
 
- 
          
autoplot(<mforecast>)autolayer(<mforecast>)plot(<mforecast>) - Multivariate forecast plot
 
- 
          
autoplot(<decomposed.ts>)autoplot(<stl>)autoplot(<StructTS>)autoplot(<seas>)autoplot(<mstl>) - Plot time series decomposition components using ggplot
 
- 
          
plot(<Arima>)plot(<ar>)autoplot(<Arima>)autoplot(<ar>) - Plot characteristic roots from ARIMA model
 
- 
          
plot(<bats>)autoplot(<tbats>)autoplot(<bats>)plot(<tbats>) - Plot components from BATS model
 
- 
          
plot(<ets>)autoplot(<ets>) - Plot components from ETS model
 
- 
          
ggtsdisplay()tsdisplay() - Time series display
 
- 
          
StatForecastGeomForecastgeom_forecast() - Forecast plot
 
- 
          
arima.errors() - Errors from a regression model with ARIMA errors
 
- 
          
arimaorder() - Return the order of an ARIMA or ARFIMA model
 
- 
          
checkresiduals() - Check that residuals from a time series model look like white noise
 
- 
          
getResponse() - Get response variable from time series model.
 
- 
          
modeldf() - Compute model degrees of freedom
 
- 
          
fitted(<ARFIMA>)fitted(<Arima>)fitted(<ar>)fitted(<bats>)fitted(<ets>)fitted(<modelAR>)fitted(<nnetar>)fitted(<tbats>) - h-step in-sample forecasts for time series models.
 
- 
          
residuals(<forecast>)residuals(<ar>)residuals(<Arima>)residuals(<bats>)residuals(<tbats>)residuals(<ets>)residuals(<ARFIMA>)residuals(<nnetar>)residuals(<stlm>)residuals(<tslm>) - Residuals for various time series models
 
- 
          
simulate(<ets>)simulate(<Arima>)simulate(<ar>)simulate(<rw_model>)simulate(<fracdiff>)simulate(<nnetar>)simulate(<modelAR>)simulate(<tbats>) - Simulation from a time series model
 
- 
          
tbats.components() - Extract components of a TBATS model
 
- 
          
accuracy(<default>) - Accuracy measures for a forecast model
 
- 
          
CV() - Cross-validation statistic
 
- 
          
CVar() - k-fold Cross-Validation applied to an autoregressive model
 
- 
          
dm.test() - Diebold-Mariano test for predictive accuracy
 
- 
          
tsCV() - Time series cross-validation